math/big.nat.div (method)

29 uses

	math/big (current package)
		float.go#L1367: 	z.mant, r = z.mant.div(nil, xadj, y.mant)
		int.go#L267: 	z.abs, _ = z.abs.div(nil, x.abs, y.abs)
		int.go#L276: 	_, z.abs = nat(nil).div(z.abs, x.abs, y.abs)
		int.go#L293: 	z.abs, r.abs = z.abs.div(r.abs, x.abs, y.abs)
		nat.go#L1018: 			zz, r = zz.div(r, z, m)
		nat.go#L1038: 				zz, r = zz.div(r, z, m)
		nat.go#L1205: 		_, x = nat(nil).div(nil, x, m)
		nat.go#L1228: 	_, RR = nat(nil).div(RR, zz, m)
		nat.go#L1283: 			_, zz = nat(nil).div(nil, zz, m)
		nat.go#L1370: 		z2, _ = z2.div(nil, x, z1)
		natconv.go#L389: 			q, r = q.div(r, q, table[index].bbb)
		natdiv.go#L510: 	q, r := qp.div(z, u, v)
		natdiv.go#L518: func (z nat) div(z2, u, v nat) (q, r nat) {
		prime.go#L112: 			quotient, y = quotient.div(y, y, n)
		prime.go#L260: 			t2, vk = t2.div(vk, t1, n)
		prime.go#L264: 			t2, vk1 = t2.div(vk1, t1, n)
		prime.go#L271: 			t2, vk1 = t2.div(vk1, t1, n)
		prime.go#L275: 			t2, vk = t2.div(vk, t1, n)
		prime.go#L297: 		t2, t3 = t2.div(t3, t1, n)
		prime.go#L317: 		t2, vk = t2.div(vk, t1, n)
		rat.go#L124: 	q, r := q.div(a2, a2, b2) // (recycle a2)
		rat.go#L222: 	q, r := q.div(a2, a2, b2) // (recycle a2)
		rat.go#L444: 			z.a.abs, _ = z.a.abs.div(nil, z.a.abs, f.abs)
		rat.go#L445: 			z.b.abs, _ = z.b.abs.div(nil, z.b.abs, f.abs)
		ratconv.go#L345: 	q, r := nat(nil).div(nat(nil), x.a.abs, x.b.abs)
		ratconv.go#L353: 	r, r2 := r.div(nat(nil), r, x.b.abs)
		ratconv.go#L427: 		if _, r = t.div(r, q, f); len(r) != 0 {
		ratconv.go#L443: 		if t, r = t.div(r, q, tab[i]); len(r) == 0 {
		ratconv.go#L451: 		if t, r = t.div(r, q, natFive); len(r) != 0 {